STPM Mathematics T (also known as Pure Mathematics) Syllabus
- Numbers and Sets
Real numbers
Exponents and logarithms
Complex numbers
Sets - Polynomials
Polynomials
Equations and inequalities
Partial fractions - Sequences and Series
Sequences
Series
Binomial expansions - Matrices
Matrices
Inverse matrices
System of linear equations - Coordinate Geometry
Cartesian coordinates in a plane
Straight lines
Curves - Functions
Functions and graphs
Composite functions
Inverse functions
Limit and continuity of a function - Differentiation
Derivative of a function
Rules for differentiation
Derivative of a function defined implicitly or parametrically
Applications of differentiation - Integration
Integral of a function
Integration techniques
Definite integrals
Applications of integration - Differential Equations
Differential equations
First order differential equations with separable variables
First order homogeneous differential equations - Trigonometry
Solution of a triangle
Trigonometric formulae
Trigonometric equations and inequalities - Deductive Geometry
Axioms
Polygons
Circles - Vectors
Vectors
Applications of vectors - Data Description
Representation of data
Measures of location
Measures of dispersion - Probability
Techniques of counting
Events and probabilities
Mutually exclusive events
Independent and conditional events - Discrete Probability Distributions
Discrete random variables
Mathematical expectation
The binomial distribution
The Poisson distribution - Continuous Probability Distributions
Continuous random variable
Probability density function
Mathematical expectation
The normal distribution
No comments:
Post a Comment